Искусственный интеллект: его истоки и проблемы


         

Благодаря этим преимуществам, тест Тьюринга


Благодаря этим преимуществам, тест Тьюринга представляет собой хорошую основу для многих схем, которые используются на практике для испытания современных интеллектуальных программ. Программа, потенциально достигшая разумности в какой-либо предметной области, может быть испытана сравнением ее способностей по решению данного множества проблем со способностями человеческого эксперта. Этот метод испытания всего лишь вариация на тему теста Тьюринга: группу людей просят сравнить "вслепую" ответы компьютера и человека. Как видим, эта методика стала неотъемлемым инструментом как при разработке, так и при проверке современных экспертных систем.

Тест Тьюринга, несмотря на свою интуитивную притягательность, уязвим для многих оправданных нападок. Одно из наиболее слабых мест - пристрастие в пользу чисто символьных задач. Тест не затрагивает способностей, требующих навыков перцепции или ловкости рук, хотя подобные аспекты являются важными составляющими человеческого интеллекта. Иногда же, напротив, тест Тьюринга обвиняют в попытках втиснуть машинный интеллект в форму интеллекта человеческого. Быть может, машинный интеллект просто настолько отличается от человеческого, что проверять его человеческими критериями - фундаментальная ошибка? Нужна ли нам, в самом деле, машина, которая бы решала математические задачи так же медленно и неточно, как человек? Не должна ли разумная машина извлекать выгоду из своих преимуществ, таких как большая, быстрая, надежная память, и не пытаться сымитировать человеческое познание? На самом деле, многие современные практики ИИ (например [Ford и Hayes, 1995]) говорят, что разработка систем, которые бы выдерживали всесторонний тест Тьюринга, - это ошибка, отвлекающая нас от более важных, насущных задач: разработки универсальных теорий, объясняющих механизмы интеллекта людей и машин и применение этих теорий к проектированию инструментов для решения конкретных практических проблем. Все же тест Тьюринга представляется нам важной составляющей в тестировании и "аттестации" современных интеллектуальных программ.

Тьюринг также затронул проблему осуществимости построения интеллектуальной программы на базе цифрового компьютера. Размышляя в терминах конкретной вычислительной модели (электронной цифровой машины с дискретными состояниями), он сделал несколько хорошо обоснованных предположений касательно ее объема памяти, сложности программы и основных принципов проектирования такой системы. Наконец, он рассмотрел множество моральных, философских и научных возражений возможности создания такой программы средствами современной технологии. Отсылаем читателя к статье Тьюринга за познавательным и все еще актуальным изложением сути споров о возможностях интеллектуальных машин.

Два возражения, приведенных Тьюрингом, стоит рассмотреть детально. "Возражение леди Лавлейс", впервые сформулированное Адой Лавлейс, сводится к тому, что компьютеры могут делать лишь то, что им укажут, и, следовательно, не могут выполнять оригинальные (читай: разумные) действия. Однако экспертные системы (см. подраздел 1.2.3 и главу 7), особенно в области диагностики, могут формулировать выводы, которые не были заложены в них разработчиками. Многие исследователи считают, что творческие способности можно реализовать программно.

Другое возражение, "аргумент естественности поведения", связано с невозможностью создания набора правил, которые бы говорили индивидууму, что в точности нужно делать при каждом возможном стечении обстоятельств. Действительно, гибкость, позволяющая биологическому разуму реагировать практически на бесконечное количество различных ситуаций приемлемым, если даже и не оптимальным образом - отличительная черта разумного поведения. Справедливо замечание, что управляющая логика, используемая в большинстве традиционных компьютерных программ, не проявляет великой гибкости или силы воображения, но неверно, что все программы должны писаться подобным образом. Большая часть работ в сфере ИИ за последние 25 лет была направлена на разработку таких языков программирования и моделей, призванных устранить упомянутый недостаток, как продукционные системы, объектные системы, сетевые представления и другие модели, обсуждаемые в этой книге.

Современные программы ИИ обычно состоят из набора модульных компонентов, или правил поведения, которые не выполняются в жестко заданном порядке, а активизируются по мере надобности в зависимости от структуры конкретной задачи. Системы обнаружения совпадений позволяют применять общие правила к целому диапазону задач. Эти системы необычайно гибки, что позволяет относительно маленьким программам проявлять разнообразное поведение в широких пределах, реагируя на различные задачи и ситуации.

Можно ли довести гибкость таких программ до уровня живых организмов, все еще предмет жарких споров. Нобелевский лауреат Герберт Саймон сказал, что большей частью своеобразие и изменчивость поведения, присущие живым существам, возникли скорее благодаря сложности их окружающей среды, чем благодаря сложности их внутренних "программ". В [Simon, 1981] Саймон описывает муравья, петляющего по неровной, пересеченной поверхности. Хотя путь муравья кажется довольно сложным, Саймон утверждает, что цель муравья очень проста: вернуться как можно скорее в колонию. Изгибы и повороты его пути вызваны встречаемыми препятствиями. Саймон заключает, что:

"Муравей, рассматриваемый в качестве проявляющей разумное поведение системы, на самом деле очень прост. Кажущаяся сложность его поведения в большей степени отражает сложность среды, в которой он существует".

Эта идея, если удастся доказать применимость ее к организмам с более сложным интеллектом, составит сильный аргумент в пользу простоты, а следовательно, постижимо-сти интеллектуальных систем. Любопытно, что, применив эту идею к человеку, мы придем к выводу об огромной значимости культуры в формировании интеллекта. Интеллект, похоже, не взращивается во тьме, как грибы. Для его развития необходимо взаимодействие с достаточно богатой окружающей средой. Культура так же необходима для создания человеческих существ, как и человеческие существа для создания культуры. Эта мысль не умаляет могущества наших интеллектов, но подчеркивает удивительное богатство и связь различных культур, сформировавших жизни отдельных людей. Фактически на идее о том, что интеллект возникает из взаимодействий индивидуальных элементов общества, основывается подход к ИИ, представленный в следующем разделе.

1.1.4. Биологические и социальные модели интеллекта: агенты


Содержание  Назад  Вперед